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ABSTRACT

Phenotypic plasticity, the ability of an individual to alter its phenotype in response to changes in the envi-
ronment, has been proposed as a target for breeding crop varieties with high environmental fithess. Here,
we used phenotypic and genotypic data from multiple maize (Zea mays L.) populations to mathematically
model phenotypic plasticity in response to the environment (PPRE) in inbred and hybrid lines. PPRE can be
simply described by a linear model in which the two main parameters, intercept a and slope b, reflect two
classes of genes responsive to endogenous (class A) and exogenous (class B) signals that coordinate plant
development. Together, class A and class B genes contribute to the phenotypic plasticity of an individual in
response to the environment. We also made connections between phenotypic plasticity and hybrid perfor-
mance or general combining ability (GCA) of yield using 30 F4 hybrid populations generated by crossing the
same maternal line with 30 paternal lines from different maize heterotic groups. We show that the param-
eters a and b from two given parental lines must be concordant to reach an ideal GCA of F, yield. We
hypothesize that coordinated regulation of the two classes of genes in the F, hybrid genome is the basis
for high GCA. Based on this theory, we built a series of predictive models to evaluate GCA in silico between
parental lines of different heterotic groups.
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genomic, and environmental levels (Malosetti et al., 2013; Des
Marais et al., 2013).

INTRODUCTION

Plants modify a variety of phenotypic traits in response to
environmental conditions, from the metabolic and cellular
levels to the plant architecture level. This phenotypic
plasticity is enabled by a combination of genetic and
environmental factors and their interactions (Bradshaw, 1965;
Des Marais et al., 2013). Thus, the observed phenotype of an
individual is usually expressed as P = G + E + GXE, in which P
is the phenotypic value that is affected by genotype
G in environment E and by their interactions GXE (Baye et al.,

Although the interplay between genes and the environment has
been widely studied in multiple crop species using quantitative
and population genetics approaches, the molecular mechanism
underlying phenotypic plasticity remains largely elusive
(Taylor et al., 2021). The genetic control of the final expressed
phenotype, phenotypic plasticity, and trait developmental
trajectory can be resolved by measuring the genetic effects of
several loci in individual environments, reaction-norm parameters

2011). Dissecting the roles of environmental factors in shaping
genetic and phenotypic plasticity is important for bolstering
agricultural  productivity under current climate change
projections (Aspinwall et al., 2015). Temperature and day length
are critical environmental factors that affect phenotypes
in many crop species and are used in modeling of crop
development (Robertson, 1968; Brachi et al., 2010; Blackman,
2017; Scheres and van der Putten, 2017). Therefore, identifying
the effects of such environmental factors on crop yield would
enhance our understanding of GXE interactions at genetic,

across environments, and growth curve parameters throughout
the season (Mu et al., 2022). It is critical to consider plastic
responses in applications such as crop breeding, because
plants must respond to the environments to which they are
subjected. Although variability in plasticity at the population
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level has received much attention, most studies have focused on
inbred populations (Kusmec et al., 2017; Li et al., 2021). Fewer
studies have examined the effect of phenotypic plasticity on
hybrid performance or heterosis because of the complexity
represented by hybrids with two sets of genomes from their
biparental lines (Gage et al., 2017). Thus, exploring the patterns
of biparental phenotypic plasticity in response to the
environment may reveal aspects of hybrid performance that
can aid hybrid breeding.

Phenotypic plasticity is crucial for crop productivity and is sub-
jected to artificial selection in breeding because greater adaptive
plasticity may maintain stable yield and quality in changing envi-
ronments (Nicotra et al., 2010; Kusmec et al., 2018). From an
ecological and evolutionary perspective, phenotypic plasticity
may be a powerful means of adaptation (Kelly et al., 2012).
Phenotypic plasticity and its relationship with agricultural
performance were documented as early as about 1500 years
ago in the ancient Chinese agricultural textbook Qi Min Yao
Shu, written by the Chinese agronomist Jia Sixie in the
Northern Wei Dynasty. One of the chapters describes the
relationship between flowering time, plant height, and grain
yield in crops as follows: “While the early-maturing crop features
short plant height but high grain yield, the late-maturing crop
features tall plant height but low grain yield.”

Research on phenotypic plasticity targeting flowering time, plant
height, and crop vyield will thus help reveal the patterns and
genetic basis of crop adaptation. A model or framework incorpo-
rating an environmental dimension is highly desirable for quanti-
fying the genetic architecture of phenotypic plasticity (Wang
et al,, 2013). Phenotypic plasticity may respond to multiple
variables in the environment. Chevin and Lande (2015) contend
that the linear combination of environmental variables that
serve as developmental cues for the plastic trait is the
multivariate best linear predictor of changes in the optimum at
evolutionary equilibrium (Chevin and Lande, 2015). Multiple
environmental factors influence plant development, but their
effects are too complex to be considered together in a single
model. A meaningful dimensionality reduction approach is thus
important for generating a unified index to summarize the
essential factors that contribute most to phenotypic plasticity.
The particular way in which a genotype varies in its expression
across a range of environments can be described by
genetically determined reaction norms (Larcher, 2003). Gratani
(2014) argue that the reaction norm for any specific trait of a
genotype can be visualized as a line or a curve on a two-
dimensional plot of the environmental value versus the pheno-
typic value. Research by Li et al. (2018) on two simplified
response norm parameters, intercept and slope, shows that
they may aid in genome prediction and potentially reveal the
genetic determinants that underlie the patterned differential
responses of individuals to environmental conditions. The
environmental dimension can be added to the genomic
selection of complex traits using two reaction norm parameters,
thus facilitating the establishment of optimally designed multi-
environment trials for forecasting crop performance at regional
or global scales (Li et al., 2021).

Hybrid maize breeding has enhanced grain production more than
8-fold since the 1930s (Duvick, 2001). The primary breeding goal
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is now to identify high-yielding hybrid commercial cultivars that
can adapt well to the increasingly varied temperate growing
conditions of maize. However, we know considerably less
about how hybrid performance interacts with environmental
changes and the associated phenotypic plasticity, which must
be taken into account to improve the adaptation of future maize
hybrids. The performance of hybrids is influenced by the
expression of genes that control traits related to their stress
tolerance and fitness (Chen, 2013). Hybrids contain novel
genotypes obtained by biparental hybridization, and parental
adaptive plasticity in response to the environment may affect
hybrid performance. The combination of parental inbred lines is
crucial for the formation of heterosis; it is usually described by
the metrics general combining ability (GCA) and special
combining ability, which indicates the breeding value of a
parent (Rojas and Sprague, 1952). Breeding value prediction
(GCA) is feasible given adequate data; however, predicting
intra- and inter-motif interactions that contribute to special
combining ability is a more difficult component of predicting
hybrid performance. Whether and how the phenotypic plasticity
of the biparental lines is related to their combining ability in the
F, hybrids will be key to exploring adaptive plasticity. Answering
these questions will help to identify superior parents that can be
used in breeding programs or promising cross combinations for
cultivar development. By comprehensively collecting environ-
mental, multi-omics, and phenotypic data via big-data-driven
platforms, we can predict hybrid performance in advance
through the phenotypic plasticity of parental inbred lines,
thereby improving the efficiency and stability of hybrid maize
production.

In this study, we developed a linear model (phenotypic plasticity
in response to the environment [PPRE]) using the phenotypic
plasticity response to the environment, which adds an environ-
mental dimension to genome-wide association studies (GWAS)
and genomic selection (GS) of complex traits. Joint research on
flowering time, plant height, and crop yield revealed the genetic
basis of phenotypic plasticity. We analyzed the biological impli-
cations of the model parameters and the patterns of phenotypic
plasticity displayed by the parental lines in response to the envi-
ronment and demonstrated that the concordant response of
biparental lines influences hybrid performance. This work pro-
vides a convenient and low-cost means for interrogating GCA
without having to generate F4 hybrids.

RESULTS

Phenotypic plasticity of maize inbred and hybrid lines

To model the phenotypic plasticity of maize inbred and hybrid
lines in response to the environment, we used a set of previously
published genotypic and phenotypic data from four maize popu-
lations (methods). The inbred population was composed of the
complete-diallel design plus unbalanced breeding-like inter-
cross (CUBIC) lines, consisting of 1404 lines used as the
maternal pool to cross with paternal tester lines (Liu et al.,
2020). One of the hybrid populations comprised 6210 F4
hybrids generated by crossing 207 CUBIC lines with 30 paternal
testers. The other two populations were F; hybrids generated by
crossing the 1404 CUBIC lines as the female parents with two
elite testers, Jing724 and Zheng58, which are widely used in
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Figure 1. Phenotypic plasticity of maize inbred and hybrid lines.
(A) Geographic distribution of the five experimental locations.

(B) Summary of variance due to environment, genotype, or G x E with residual error for nine population—trait combinations. Three populations (1404 inbred
population, Jing724 F, population, and Zheng58 F, population) and three traits (flowering time [FT], plant height [PH], and ear weight [EW]) were included.
(C) Manhattan plots from genome-wide association studies (GWASSs) of the inbred population for FT (left) and PH (right) in five locations.

the maize breeding industry in China (Shu et al.,, 2021). All
genotypes were phenotyped for three agronomic traits
(flowering time [FT], plant height [PH], and ear weight [EW]) in
five locations: Henan (35°31’N), Hebei (38°85'N), Beijing
(40°13'N), Liaoning (41°48’'N), and Jilin (43°88'N) (Figure 1A). As
latitude increased across the five locations, FT for inbred and
hybrid lines was gradually delayed, whereas PH and EW
increased over the same latitudinal gradient, indicating the
presence of phenotypic plasticity (Supplemental Figure 1).

We analyzed the individual contributions from the statistical
terms genotype (G), environment (E), and G X E (with residual vari-
ance) to each phenotype and found different patterns for each of
the three traits in inbred and hybrid lines (Figure 1B). For FT,
E accounted for about 90% of the standing phenotypic
variance in inbred and hybrid lines, indicating that the
environment has a substantial influence on FT. For PH, E and
G accounted for almost 20% and 60% of the phenotypic
variance in inbred lines, respectively; however, the individual
contributions of E and G for hybrid lines were approximately
60% and 20%. The contributions of E and G to PH variation
were thus completely different in inbred and hybrid lines. This

result indicated that the hybrid performance of PH is strongly
influenced by the environment. We observed the same pattern
for EW as for the first two traits, although the statistical term
GxE made a greater contribution to EW phenotypic variation
(85%), much greater than that seen for FT or PH. We therefore
concluded that the hybrid performance of PH and EW s
substantially influenced by E and GXE, which is likely
attributable to the better performance of hybrid genomes in
response to the environment compared with inbred genomes.

The heritability of the three traits of the maternal population is
H (FT) = 0.87, H (PH) = 0.92, and H (EW) = 0.77, which is high
enough to ensure the high quality of the phenotypic data
collected at the five locations. We performed genetic mapping
of FT and PH traits individually at each of the five locations to
reveal the underlying mechanisms of phenotypic plasticity by
focusing on specific loci. Comparison of GWAS results across
the five locations enabled us to identify common and
different signals of trait-associated genes in different environ-
ments (Figure 1C). For example, a signal was present in four
locations but not in Henan for the flowering gene ZCN8 (Zea
mays CENTRORADIALISS8), but we detected signals for ZCN4
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and ZmMADSG69 only in Jilin and Liaoning, respectively. GWAS
for PH produced two peaks, with BRASSINOSTEROID-
DEFICIENT DWARF1 (BRD1) present at all five locations and
Brachytic2 (BR2) showing a significant peak only in Hebei and
Liaoning. These results indicate that genotypes of a given gene
can have conditional effects in certain environments, implying
that phenotypic plasticity may result from genotype-
environment interactions (i.e., how a genotype responds to the
environment).

Defining environmental indexes and critical windows

Multiple environmental factors influence plant development, but
their effects are too complex to consider all together in a single
genotype-by-environment interaction model. Therefore, it is
important to use a meaningful dimensionality reduction method
to generate a unified index summarizing the underlying factors
that contribute most to phenotypic plasticity. Light and tempera-
ture are two such critical ecological factors and are relatively
stable in a fixed environment compared with other factors. Light
intensity determines the total amount of light energy (radiant en-
ergy) that can be converted into chemical energy, and tempera-
ture determines the transformation rate of heat energy (thermal
energy). Therefore, the ecological ranges for the major maize
cultivation zones are usually delineated by accumulated temper-
ature zones (ATZs), which mainly consider day length (DL) and
temperature during the maize growth period from 0-120 days
(17 weeks) after sowing (Supplemental Figure 2). The five
locations used in this study represent the five major ATZs in
China, thus providing a reference for how phenotypic plasticity
may influence the selection of optimal ATZs for novel maize
varieties. We first selected three environmental indexes that are
commonly used in maize cultivation to model the relationship
between phenotypes and the environment: growing degree
days (GDDs), photothermal time (PTT), and photothermal ratio
(PTR). PTT and PTR are the product and ratio between DL and
GDD, respectively, which summarize the contribution of radiant
energy (light) and thermal energy (temperature) to maize
development in single metrics (Robertson, 1968; Fischer, 1985;
Masle et al., 1989; Liu and Heins, 2002; Ravi Kumar et al,,
2009; Wilczek et al., 2009). For PTT and PTR, we used the real
DL (monitored in real time) instead of the theoretical DL (based
on latitude). This is because the real DL represents the actual
duration of light received by the plant during the day and better
reflects the real photosynthetic energy (Supplemental Figure 2).
We then determined the critical window of maize development
during which each phenotype showed the strongest positive
association with the three indexes, followed by selection of
a representative index for subsequent model construction.
Identifying critical growth periods during which crops are
sensitive to environmental stimuli helps to quantify the effect of
environmental dimensions on phenotypes. We therefore
calculated all possible values for GDD, PTT, and PTR in any
time window within the time range of 0-60 days after
sowing using weather data collected at the five locations
(methods). We then computed a series of correlations between
the three phenotypes and the three indexes within any time
window before generating the corresponding correlation
heatmaps (Figure 2A and Supplemental Figure 3). The
heatmaps provided a visual means to easily identify the time
windows with the strongest correlations between phenotypes
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and indexes, which we defined as critical windows (methods).
These windows indicate the stage for expression of a
trait during which the environment has the greatest influence on
phenotypic plasticity. Taking GDD as an example, the critical
windows for FT, PH, and EW in inbred lines were 11-36, 37-46,
and 47-54 days, respectively (Figure 2B). Although we obtained
different critical windows when traits and indexes varied, we
observed no significant differences between inbred and hybrid
lines.

The correlations between phenotypes and environmental indexes
show that environmental changes (Supplemental Figures 1 and 4),
such as longer DLs and lower temperatures with increasing
latitude as represented by the five ATZs (Supplemental
Figure 2), appear to have a linear effect on phenotypic changes
in FT, PH, and EW. In addition, the different critical windows for
average GDD, PTT, and PTR for each trait indicate that sensing
of light and temperature at different vegetative growth stages
may make different contributions to phenotypic effects, as
exemplified by the three critical windows for EW (GDD, 47—
54 days; PTT, 26-35 days; PTR, 15-24 days). This phenomenon
of correlated environmental change and phenotypic variation
was defined as PPRE, which we then examined through
statistical modeling.

Biological implications of the parameters in the PPRE
model

Taking FT as an example, we determined that the average FT
values of inbred, hybrid, and tester lines exhibited linear correla-
tions with all three indexes (within the critical window period)
across the five locations (Supplemental Figure 4A). Therefore, a
simple linear model may effectively describe how phenotypic
plasticity responds to the environment in maize. FT was
negatively correlated with GDD when plotted as a function of
latitude, but FT was positively correlated with PTT and PTR. We
reasoned that the three correlations describe the same
relationship between FT and the environment. FT was gradually
delayed across the five ATZs from low to high latitudes,
reflecting the need for longer days at high latitudes and low
temperatures than at low latitudes and high temperatures in
order to accumulate sufficient biomass during the vegetative
phase before the transition to the reproductive stage. Low
temperatures decrease the rate of GDD accumulation but not
the accumulated degree days required for flowering. Of the
three indexes, PTR showed the highest correlations with FT, as
evidenced by the distribution of the correlations between PTR
across all 1404 inbred lines (Supplemental Figure 4B). We
therefore selected PTR as the representative index for
constructing the PPRE model for the three traits and performed
GWAS analysis. In the subsequent analysis of the PH model
parameters, we found that the PTT index better represented
the effect of the environment on PH, and we then used PTT for
genomic prediction and parental plasticity analysis of PH.

The PPRE model may be simply formulated by the linear model
Yj = ai+b; x X;, where Yj is the phenotypic value of sample
i in location j, and X; is the value of the environmental index in
locationj. The PPRE model was defined from an applied perspec-
tive, and it effectively explains the linear relationship between
each phenotype (FT, PH, and EW) and the PTR index
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Figure 2. Determination of the correlated environmental index and the critical window for vegetative growth.

Heatmaps of the correlations between phenotypes and indexes show the critical time windows with the strongest correlations, indicating the critical stage
during development when the environment has the greatest influence on the phenotypic plasticity of a given trait.

(A) Heatmaps of the correlations between three environmental indexes (any time window within the time range of 0-60 days) and the PH phenotypic mean
of the inbred population. Circles on the heatmaps represent the selected critical window periods.

(B) Critical window periods for population trait-environmental index combinations. The critical window period for a given trait and environmental index

was similar across different maize populations.

(Figure 3A). In the PPRE model, intercept a and slope b are the
only two reaction norm parameters. Placing these two
parameters in a biological context helps to clarify the genetic
mechanism underlying the model. Intercept a may be
interpreted as the phenotypic variant contributed by the
genotype of a sample per se (G) in environment (E), expressed
as (G+E), which reflects the performance per se in the average
environment among those sampled. Slope b represents the
extent of the contribution by the same genotype (G) in response
to different environments (E), manifested as GXE, and reflects
the rate of change in performance per se with respect to the
magnitude of deviations from the average environment. Based
on the above assumptions, the absolute value of the slope, |b|,
may be used to describe the degree of phenotypic plasticity.
Taking FT as an example, as illustrated in Supplemental
Figure 4A, different ways of computing environmental indexes
in the same environment may be positively or negatively
correlated with the same trait. Therefore, we only considered
the absolute value of the intercept. The absolute value of the
slope, |b|, may be used to describe the degree to which a given
genotype responds to a designated environment. That is, the
larger the value of |b|, the greater the plasticity this genotype
will exhibit in response to a broad range of environments as an
indication of adaptability. Phenotypic plasticity is often highly
adaptive (Whitman and Agrawal, 2009) and provides organisms
with the potential to respond rapidly and effectively to

environmental change (Charmantier et al., 2008). By contrast, a
small absolute value of the slope is an indication of phenotypic
stability.

We obtained the values for intercept a and slope b derived from the
PPRE model for allinbred lines and used them individually as traits
to perform GWAS. We surmised that this approach would enable
the identification of genes that contribute to phenotypic
plasticity and also help to classify them based on their contribu-
tions arising from (G+E) (from the a GWAS) or GXE (from the
b GWAS) effects. We used a and b derived from the PPRE model
constructed based on FT and PTR (FT-PTR model) data for the
GWAS across all 1404 inbred lines. We then compared these re-
sults with those obtained by GWAS on FT itself (Figure 1C). In
addition to peaks around ZmMADS69 and ZCN8 already
detected by GWAS using FT data as a trait, we observed two
additional peaks that coincided with the genomic locations of
Eps15 homology domain 1 (ZmEHD1) and Constans of Zea
mays1 (CONZ1) when slope b was used for GWAS (Figure 3B,
top panel). By contrast, we detected only one peak for
ZmMADS 15 from the GWAS of intercept a (Figure 3B, bottom
panel). Although all five of these genes participate in the
regulation of FT in maize, their roles related to (G+E) or GXE
effects thus appeared to be distinct. We performed the same
analysis for the results obtained by GWAS for the traits PH, a,
and b derived from the PH-PTR model. Although GWAS for PH
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Figure 3. PPRE models and Manhattan plots from GWAS of model parameters.
(A) Phenotypes at the five locations were fitted linearly for each inbred population to the environmental index during the critical window period, and a linear
model of phenotypic plasticity response to the environment (PPRE) was established. Two linear parameters were obtained for each PPRE model:

intercept a and slope b.

(B and C) Manhattan plots from GWAS on the intercept and slope values derived from FT phenotypic plasticity (B) and PH phenotypic plasticity (C) of the
maternal population. Model parameters identify and differentiate endogenous signal-responsive genes ([G+E], intercept a, bottom) and environmentally

sensitive genes (GXE, slope b, top) that contribute to phenotypic plasticity.

identified genomic regions containing BRD71 and BR2 simulta-
neously, GWAS for a detected only BR2, and GWAS for b detected
only BRD1 (Figure 3C). We also obtained two additional peaks not
seen in the GWAS results for PH: one peak at ZmMADS 15 using b
as the trait and one at Cinnamoyl-coenzyme A reductase 1
(ZmCCR1) using a or b as the trait. Collectively, these results
indicate that genes associated with FT and PH play different
roles in phenotypic plasticity through different effects of (G+E) or
GxE, which will be addressed in the discussion.

Linear parameters from the PPRE model assist in
genomic predictions

Genomic prediction using a GS model has been widely used to
reduce phenotyping costs associated with large-scale field trials.
The most widely used GS method is the ridge regression best
linear unbiased prediction (rrBLUP) model, which usually directly
predicts the BLUP value of the phenotypes (Heffner et al., 2009;
Guo et al.,, 2012; Massman et al., 2013). To describe the
performance of complex traits in multiple environments, linear
parameters derived from the PPRE model can be used as
intermediate targets for phenotypic predictions. Li et al. (2018)
and Guo et al. (2020) developed the method for prediction of
phenotypic plasticity model parameters and confirmed the
reliability of model parameter predictions (Li et al., 2018; Guo
et al.,, 2020). Here, we used four methods to predict the
phenotypes of inbred lines under four distinct scenarios
(Figure 4A) and compared the cost and prediction accuracy of
the four methods (Figure 4B).

Method 1 (M1) uses the phenotypes collected in the four environ-
ments to 1) build a PPRE model, 2) calculate the intercept a and
slope b of each line, and 3) calculate the phenotypic value ac-
cording to the environmental index of the fifth environment to
be tested/predicted. Thus, M1 predicts phenotypes in untested
environments using 80% of all phenotypes collected and 80%
of the associated cost (relative to phenotyping the entire panel),
but there is no cost for genotyping. M1 is suitable when testing
ecoregions with small sample sizes (e.g., candidate varieties),
and its predictive effect is the upper limit of phenotypic
prediction.

Method 2 (M2) uses the rrBLUP method (methods) to predict
phenotypes from genotypes. In this case, the genotypic data of
inbred lines were randomly and evenly split into a training set
and a test set 10 times. M2 is useful for predicting the
phenotype of untested genotypes in tested environments; this
approach requires 50% of the phenotyping cost and 100% of
the sequencing cost. The predictive effect of M2 is optimal for
predicting phenotypes from genotypes.

Method 3 (M3) takes the linear parameters a and b as intermedi-
ate targets for prediction. The inbred lines were randomly but
equally separated into training and test sets (50:50). First, a
PPRE model of the training set is established using phenotypic
and environmental data at all five locations to derive the model
parameters (intercept a and slope b). The model parameters of
the test sets are then predicted using the rrfBLUP method
described above. The predicted parameters and environmental
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intermediate targets to predict the phenotypes of untested genotypes in tested environments and untested environments, respectively.

(B) Accuracy of the four genome prediction methods for three traits in the inbred population, i.e., Pearson’s correlation coefficients between predicted

and observed values.

indexes are used to calculate the phenotypes of the test sets. M3
predicts the phenotypes of untested genotypes in tested environ-
ments and requires 50% of the phenotyping cost and 100% of the
genotyping cost. M3 costs almost the same as M2, and it fore-
casts similar effects as M2. The advantage of M3 compared
with M2 is that the model parameters of M3 can be used to pre-
dict phenotypes from other environments.

Method 4 (M4) also uses linear parameters as intermediate tar-
gets for prediction but is based on the PPRE model established
from data for four of the five environments. The phenotypic
values are then calculated based on the environmental index
of the target environment. M4 is suitable for predicting pheno-
types of untested genotypes in untested environments and re-
quires 40% of the phenotyping cost and 100% of the genotyp-
ing cost. M4 predicts the most challenging scenarios with
acceptable forecast accuracy, and the total cost is further
reduced.

Predictive model parameters can therefore assess the perfor-
mance of genetically complex lines grown in multiple environ-
ments. Based on the model parameters of a given trait, crop
germplasm better adapted to specific environments (ecoregions)
can be selected, thereby facilitating large-scale planting, pollina-
tion, and harvesting. It is a given that the larger the training set, the
greater the possible benefits. However, we need to focus on and
compare the prediction accuracy of different methods and
discuss the balance of acceptable costs and benefits in the
breeding process.

The concordant response of biparental lines influences
hybrid performance

It has been reported previously that the environment may affect
hybrid performance in maize (Munaro et al., 2011; Blum, 2013).
Because a and b from the PPRE model can statistically
describe the GXE interaction, we sought to determine whether
the concordance of a and b parameters from the two parental
lines of a cross is correlated with the extent of hybrid
performance. We used another previously published dataset of
6210 F4 hybrids generated by crossing 207 CUBIC lines as
maternal lines with 30 paternal tester lines (Liu et al., 2020). We
measured the same three phenotypes (FT, PH, and EW) in the
same five locations. Because the 30 tester lines were selected
from different heterotic groups, the GCA values calculated from
the EW of their F; offspring covered a different range
(Supplemental Table 1). Twenty-seven testers had available FT-
PTR model parameters because three lines had missing FT
data. We ranked all 27 tester lines by their GCA values and clas-
sified them into three groups with high, moderate, or low GCA. As
with the inbred population, we determined the critical windows
and constructed the PPRE model separately for the maternal
and paternal lines (methods), resulting in a set of a and b values
from each FT-PTR model. We then generated a scatterplot, plot-
ting the slope b along the x axis and the intercept a along the y
axis for the maternal lines (Figure 5A, top left panel). We
observed a negative correlation between a and b (y = -0.77x +
70.6), illustrating how FT of the maternal population responds
to the environment as represented by the PTR index. We
generated corresponding scatterplots for the three groups of
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Figure 5. The concordant response in bipa-
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(A) Scatterplots of model parameters derived from
the FT-PTR model of 207 maternal (left) and 30
paternal (right) lines. The slope and intercept
values are plotted along the x axis and y axis,
respectively. For testers with high general
combining ability (GCA), the regression line is
approximately parallel to the regression line of the
maternal population, and the distribution is
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paternal testers. For testers with high GCA, the regression line
(v = -0.54x + 67.4) was approximately the same as that of the
maternal population (Figure 5A, top right panel), with an overall
distribution closest to the center of the maternal population.
Regression lines for testers with moderate and low GCA (y =
0.12x + 53.4 and y = 0.89x + 34.8, respectively) showed trends
opposite to that of the maternal population (Figure 5A, bottom
right panel), and the distribution of individual points was more
scattered and farther from the center of the maternal
population. The similar regression lines of maternal lines and
paternal lines with high GCA suggested that the extent of
hybrid performance may be correlated with the extent of
biparental concordance for environmental response. In other
words, the FTs of inbred lines from two heterotic groups must
respond concordantly to the environment to produce ideal yield
heterosis in their derived F4 hybrids.

If the above hypothesis is correct, then a PPRE model may be
sufficient to derive parameters a and b and perform an initial eval-
uation of hybrid performance, given two populations of inbred
lines, without the need to generate or phenotype F; hybrids.
High-yielding F; hybrids would be expected for maternal and
paternal lines with similar a and b parameters, which can be esti-
mated by their closeness in values. Because both FT and PH
were correlated with EW, we focused on the FT-PTR and PH-
PTT models. Using the resulting a and b values, we subtracted
the paternal a (or b) value from the averaged a (or b) value of
the maternal population before applying a normalization by score

8

-40

General combining ability

P = 0.016) and between slope b from the
PH-PTT model (D) and paternal GCA values
(r=-0.612, P = 0.001). When we added the
scores from models A and D, we observed
an increase in the final concordance score
(r = 0.678, P = 7.24 x 10 ®) with paternal GCA (Figure 5B).
Adding the score from model C to those from models A and D
further improved precision (r = 0.704, P = 2.93 x 107%). In
summary, the above analysis validated our hypothesis that
biparental concordance in environmental response is likely
necessary for achieving ideal heterosis (high combining ability)
between two inbred lines. This result may offer a convenient
and low-cost means of interrogating GCA without having to
generate or phenotype F4 hybrids.

20 0 20

The response of parental phenotypic plasticity to the
environment affects combining ability

We next explored the effect of biparental PPRE on heterosis. To
this end, we determined the critical windows and constructed a
PPRE model for FT-PTR and PH-PTT, from which we derived
intercept a and slope b for the 207 maternal lines. We plotted
scatterplots of the 207 maternal model parameters with their
GCA values, and there appeared to be a positive correlation be-
tween the maternal model parameters and their GCA values
(Supplemental Figure 6). To quantify this relationship and
facilitate decision making, we classified maternal lines into five
classes based on the magnitude (absolute value) of the model
parameters and calculated the corresponding changes in
maternal GCA values (Supplemental Table 2; Figure 6A). We
determined that larger FT-PTR slope values in the maternal line
were associated with higher GCA values. Likewise, a greater
PH-PTT intercept value in the maternal line coincided with a
higher GCA value, that is, the environmental plasticity of parental
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Figure 6. The response of parental phenotypic plasticity to the environment affects hybrid performance.

(A) Boxplots of the relationship between 207 maternal model parameters and their GCA values. The x axis indicates the ranking of 207 maternal lines
according to the magnitude (absolute value) of the model parameters, and the y axis indicates their corresponding GCA values. The values above the
boxes are the Pvalues of the differences between the two sets of maternal GCA data calculated using the t-test method.

(B) Boxplots of the relationship between 1404 maternal model parameters and the yields of their F1 hybrids from crosses with Zheng58 in different
locations. The x axis indicates the model parameters in the different locations, showing the bottom 10% (left) and the top 10% (right). The y axis indicates
the EW of each Zheng58 F4 hybrid. The values above the boxes are Pvalues calculated using the t-test method for differences between the EWs of hybrids
produced by the two maternal groups with the bottom 10% and top 10% model parameters.

FT (GxE) and the performance of parental PH in the environment
(G+E) positively affected its GCA.

To verify this idea, we derived intercept a and slope b from the FT-
PTR and PH-PTT models for the 1404 maternal lines. We gener-
ated a scatterplot (Supplemental Figure 7) and colored the points
using the EW values corresponding to the Fis. The model
parameters of the maternal line appeared to distinguish the
high- and low-yielding F4s. To perform statistical tests to deter-
mine the significance level of the difference between the two
groups, we separated the maternal lines into the bottom 10%
and top 10% based on each model parameter value, thus
defining two sets of 140 maternal lines. We then extracted EWs
for their corresponding F; hybrids when crossed to Zheng58
and plotted the values as boxplots at each of the five locations
(Figure 6B). We obtained results that were largely consistent
with the above hypothesis and observed that the differences in
EW between the bottom 10% (left) and top 10% (right) groups
were not uniform across locations. Indeed, the FT-PTR for slope
was significantly different between the two groups at two loca-
tions, Beijing and Liaoning, and the PH-PTT for intercept was
significantly different at all five locations. At the same time,
when the maternal lines were crossed to Jing724, we extracted
the EWs of their corresponding F; hybrids (Supplemental
Figure 8) and found the same pattern. FT-PTR for slope was
significantly different between the two groups at three
locations, and PH-PTT for intercept was significantly different at
four locations. In Figure 6B and Supplemental Figure 8, it can
be seen that the EWs of the two F; populations were in multiple
locations, a total of 20 sets, showing the same pattern at the

same time; that is, the bottom 10% (left) of EW for F; is lower
than the top 10% (right). These differences were significant in
14 of the sets. This observation suggests that the extent to
which parental phenotypic plasticity affects hybrid performance
(high yield) depends on the environment.

Based on PPRE model parameters and their biological meanings,
we revealed how parental FT and PH affect combining ability,
thus producing positive hybrid performance that is environmen-
tally dependent. We established that strong phenotypic plasticity
in the parents results in higher yield for the corresponding hybrid.
Varieties with greater plasticity may therefore support high yields
in multiple and varied environments. Selection of hybrids with
high adaptability and plasticity should thus be a key goal of maize
breeding.

DISCUSSION

We obtained the linear model of PPRE by fitting phenotypic
values against an environmental index in multiple ecoregions.
This model can be used to describe the phenotypic change in a
given inbred or hybrid line attributable to changes in the environ-
ment. It is simply formulated by the linear model Y; = a; +b; x X,
where Yj; is the phenotypic value of sample i in location j, and X; is
the environmental index in location j. The parameter a is the inter-
cept of the regression line with the y axis and is the expected
value of Y when X = 0. The parameter b is the slope of the regres-
sion line, called the regression coefficient, and represents the
average change in Y when X changes by one unit. It should be
noted that X = 0 in the linear model is a statistical theoretical
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case, such as GDD below the base temperature or direct solar
irradiance below 120 W/m? throughout the day (methods), and
the environmental index is always recorded as 0, with no
negative values. In the case of X = 0, only genotypic effects are
considered, representing the contribution of genes that are
responsive to endogenous signals. Autonomous flowering, for
example, is not affected by exogenous signals such as light or
temperature.

Phenotypic plasticity is shaped by the genotype of an individual in
the environment (G+E) in addition to the interaction effect
between the genotype and the environment (G XE). In the PPRE
model, intercept a represents (G+E), emphasizing the phenotypic
variance contributed by the genotype of an individual per se,
whereas slope b represents G XE, or the contribution of a geno-
type in response to different environments. The biological impli-
cations of a and b may then be explained by two sets of genes
involved in sensing endogenous developmental signals or exog-
enous environmental signals, respectively. In addition, because a
and b describe the extent of phenotypic plasticity of each individ-
ual, they can also be treated as individual traits for GWASs to
identify their respective causal loci and describe the biological
mechanisms underlying phenotypic plasticity.

Maize is one of the most widely cultivated crops in the world,
largely because of its diverse FTs in various environments
(Liang et al., 2019). Much of our knowledge about the factors
that control FT comes from research on the model plants
Arabidopsis thaliana and rice (Oryza sativa) (Shrestha et al.,
2014; Blumel et al., 2015). By contrast, less is known about the
genetic control of FT in maize, especially for genes involved in
the transition from vegetative to reproductive growth. GWASs
using parameters a and b derived from the FT-PTR and PH-
PTR models identified genes previously found by GWASs using
FT and PH as traits but also revealed new candidate genes not
revealed by GWASSs with these classic traits. Importantly, GWASs
using a and b enabled us to classify these candidate genes into
two classes (Figure 3B and 3C). Class A contains genes that
determine phenotypes by (G+E) per se in response to
endogenous developmental signals, whereas class B contains
genes that shape phenotypes by GXE in response to
exogenous environmental signals. The relationship between the
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Figure 7. Genetic regulatory pathways con-
trol flowering and PH in response to light
and heat.

Top panel: environmentally sensitive genes (class

CONZ1 MADSE9 B) detected by slope b. Bottom panel: endoge-
J_ J_ nous signal-responsive genes (class A) detected
EHD1 RAP2.7 by intercept a. Left panel: genetic regulatory
l \/ pathway for PH involving the identified genes.
2ong Right panel: genetic regulatory pathway for FT.

Together, class A and B genes contribute to the
L phenotypic plasticity of an individual in response
to the environment. Coordinated regulation of the
two classes of genes controlling flowering and PH
in the F1 hybrid genome may be the basis for high
yield.

MADS15
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two classes of genes derived from the FT-PTR and PH-PTR
models may facilitate a better understanding of the mechanisms
that underlie phenotypic plasticity (Figure 7).

Physiological studies in Arabidopsis have shown that the
florigen FLOWERING LOCUS T is a mobile factor that
transmits floral inductive signals from the leaves to the
shoot apex (Zeevaart, 2008). The maize FLOWERING
LOCUS Tortholog ZCN8 integrates endogenous and
photoperiod flowering signals (Lazakis et al., 2011). From the
inbred population, the GWAS of slope b derived from the FT-
PTR model detected a signal at ZCN8 but also near the genes
CONZ1, ZmEHD1, ZmMADS69, and Related to AP2.7
(ZmRAP2.7), indicating that this class of genes forms a regula-
tory module that senses environmental signals, such as
changes in photoperiod, to determine FT. In this module,
the CONZ1-ZmEHD1-ZCN8 (Miller et al., 2008; Xiao et al.,
2021) and ZmMADS69-ZmRAP2.7-ZCN8 pathways have been
reported to control FT and contribute to photoperiod
adaptation (Liang et al., 2019). The above observations
support the notion that the GWAS of b can detect
environmentally sensitive genes and reveal the molecular
mechanisms by which GXE influences phenotypic plasticity
variation. By contrast, the GWAS of a detected ZmMADS15,
which was previously reported as a floral meristem identity
gene involved in floral induction and inflorescence
development (Danilevskaya et al., 2008). These results are
consistent with the idea that intercept a represents one or
more factors responsive to endogenous developmental
signals, revealing the biological role of (G+E) in phenotypic
plasticity.

Similarly, the GWAS of a and b derived from the PH-PTR model
detected two classes of genes contributing to PH. The GWAS
of b detected a signal for BR2, which encodes a polar transporter
of auxin; this phytohormone regulates light-induced cell elonga-
tion through its effect on cell wall modifications (Masuda, 1990).
The GWAS of a identified signals at the BRD1 and ZmCCR1
loci, which encode enzymes responsible for brassinosteroid
and lignin biosynthesis, respectively (Tamasloukht et al., 2011;
Makarevitch et al., 2012). Therefore, BR2 represents the GXE
effect through sensing exogenous environmental signals,
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whereas BRD1 and ZmCCR1 represent the effect of (G+E). This
finding is consistent with a previous report that the auxin and
brassinosteroid pathways often act synergistically to regulate
cell elongation and cell proliferation (Hardtke et al., 2007).
Interestingly, we also detected a ZmMADS15 signal during
GWAS for both parameters. This result indicates that
ZmMADS15 may play an intermediate role in coordinating the
transition from vegetative to reproductive stages during floral
initiation.

In this work, we established a linear model that describes PPRE
and applied it to three representative traits: FT, PH, and EW.
Using the two main parameters of the linear model, slope b and
intercept a, we interpreted the biological implication of
phenotypic plasticity and identified key genes based on their
contributing effects for GxXE and (G+E), respectively. We further
demonstrated that F4 hybrids with high yields tended to be char-
acterized by concordant plasticity in the phenotypes of their two
parental lines, suggesting a relationship between hybrid perfor-
mance and biparental plasticity. This relationship suggests that
the basis for formation of combining ability between different het-
erotic groups may depend on the consistency of the regulatory
pathways to which class A and class B genes belong in the bipa-
rental genomes. That is, greater regulatory consistency between
the two sets of genes from biparental lines will result in a higher
combining ability in their corresponding hybrid. Therefore, pheno-
typic plasticity essentially reflects the regulatory concordance of
the two classes of genes. To ascertain whether the above rules
can be applied to precision breeding, we developed a scoring
method that uses the two parameters from the linear model to
select inbred lines and predict the performance of their F; hybrids.
Indeed, F4 hybrids derived from a cross between inbred lines with
high scores showed superior performance. This result supports
theoretical and empirical studies suggesting that selection of
phenotypic plasticity can result in adaptation to different environ-
mental conditions (Via and Lande, 1985; De Jong, 2005). Varieties
with greater plasticity can therefore sustain high and stable yields
in multiple environments. We conclude that the identification of
varieties with high indexes of adaptability and plasticity may be
valuable for selection and practical use.

METHODS

Germplasm and phenotyping

We used four previously published maize populations: one inbred popula-
tion and three hybrid populations. The inbred population consisted of
CUBIC lines containing 1404 lines used as the maternal pool for crossing
with paternal tester lines. The first hybrid population contained 6210 F hy-
brids generated by crossing 207 maternal lines with 30 paternal testers.
The other two hybrid populations were two sets of F4 hybrids generated
by crossing 1404 maternal lines with two elite testers, Jing724 and
Zheng58. All lines were planted in 2014 in five locations (N 35°31’, E
113°85/, Xinxiang City, Henan Province; N 38°85’, E 115°48', Baoding
City, Hebei Province; N 40°13’, E 116°13’, Shunyi District, Beijing City;
N 41°48', E 123°38’, Shenyang City, Liaoning Province; N 43°88', E
125°35, Changchun City, Jilin Province) in northern China
(Supplemental Table 3). The planting-to-harvest dates for the five loca-
tions were June 10 to October 16 (169 days), May 29 to October 6
(159 days), May 12 to September 29 (152 days), May 11 to October 2
(155 days), and May 9 to October 19 (172 days). The experiment used a
randomized complete block design with 20 inbred lines or hybrids planted
in each row in the field. Three replications of each line were planted and
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randomly sampled for measurement. Three phenotypes were measured:
FT (measured as the interval from sowing to the day the tassel appeared
in half of the individuals per line), PH (vertical height from the ground to the
top of the tassel with an accuracy of 0.5 cm), and EW (Supplemental
Table 4). The GCA values of 30 paternal lines and 207 maternal
lines (Supplemental Table 1; Supplemental Table 2) were calculated
using the function mmer(EW ~ Loc,random = ~ P1 +P2 +Line) in
the “sommer” R package (Covarrubias-Pazaran, 2016), where EW
represents the phenotypic value of EW of 6210 F;s at five locations, and
Loc represents the five locations as a fixed effect in the mixed linear
model. The broad-sense heritability (H) of the three traits in the maternal
population was computed using the formula H = Vj; / (Vg + Ve /L), with
the function Imer(Trait ~ (1|Line) +(1|Loc)) in the R package “Ime4”
(Bates et al., 2014), where V, is the genetic variance, V. is the
environmental variance, and L is the number of environments.

Data availability

Resequencing analysis was performed on 1404 maternal lines and 30
paternal lines. The raw sequencing reads were deposited at NCBI under
BioProject accession number PRINA597703 (https://www.ncbi.nlm.nih.
gov/bioproject/PRINA597703). A total of 6 795 498 high-quality SNPs
called from whole-genome resequencing of the 1404 inbred lines were
used for GWAS analysis and phenotype prediction (link to genotype
data: https://github.com/furan2019/GenoData).

Environmental indexes

The meteorological data used in this study came from real-time moni-
toring of the meteorological base stations where the fields were located.
Three environmental indexes were examined: GDD, PTT, and PTR.
GDDs are used to estimate the growth and development of plants and in-
sects during the growing season. The basic concept is that development
will only occur when the temperature exceeds some minimum develop-
mental threshold or base temperature (Thbase). Tbase is determined exper-
imentally and is different for each organism. The Tbase for maize is 10°C
(50°F). To calculate GDDs, the mean temperature for the day is calculated
and defined as the sum of the highest (Tmax) and lowest (Tmin) tempera-
tures for the day, divided by two. If the mean temperature is at or below
Thase, then the GDD value is zero. If the mean temperature is above
Thase, then the GDD value equals the mean temperature minus Tbase.
Average GDD, PTT, and PTR values with different starting days with a win-
dow size from 5 to 25 d during the growing season were obtained for each
environment. The average GDD was calculated using the formula GDD =
g St (1 (Tmax +Tmin) — Tbase)) /L, where S is the Sth day after
planting, and L is the length of the window in days. Tmax for maize growth
is 40°C (104°F). DL is the real duration of sunlight monitored in real time
and according to the World Meteorological Organization, and sunshine
duration during a given period is defined as the sum of the time during
which direct solar irradiance exceeds 120 W/m?2. PTT is the product of
GDD and DL. PTR is defined as the ratio of radiant energy (light) to thermal
energy (temperature), represented in this research as the ratio of DL
and GDD. These two environmental indexes add another important
variable to the environment: light. The average PTT was calculated
using the  formula  PTT = 7 (3« (Tmax +Tmin) —
Tbase) =DL) ) /L. DL is the real DL detected by the meteorological
base station. The average PTR was calculated using the formula PTR =

i)

S (%x(Tmax +T min) — Thase

Critical windows and the PPRE model

Average GDD, PTT, and PTR values were calculated for all possible time
windows from day O (sowing) to day 60 at the five experimental locations.
The critical window resulting in the strongest correlation with the mean
values of population phenotypes within the environment was identified
for average GDD, PTT, and PTR. If several time windows were strongly
correlated, then the critical windows were selected based on biological
significance. Correlations between the three environmental indexes in
the critical window and FT at the five locations were calculated, and the
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index with the strongest correlation was taken as the representative index.
Among these three indexes, PTR had the highest correlation with FT, and
we selected PTR as the representative index for constructing the PPRE
model for the three traits and performed GWAS analysis. In further model
parameter analysis, we wanted to select the best representative environ-
mental index for each trait individually to obtain the best results. For FT
and EW, we again selected PTR. However, we found that the PTT index
was more representative of the environmental effects on PH, and the
PTT index was used for genomic prediction and parental plasticity anal-
ysis of PH. A linear regression analysis was performed using the pheno-
types of each line in the five environments and the environmental index
values of the five environments during the critical window using the “Im”
function in R. The linear model fitted by the phenotype and environmental
index constituted the PPRE model. Lines with missing phenotypic data
were removed, and only lines with phenotypic data from all five locations
were retained for analysis; 1256 lines remained for the inbred population.
For the 30 testers, 27 lines had available FT-PTR (FT plasticity in response
to the environmental index PTT) model parameters because FT data were
missing for three lines, 25 lines had available PH-PTT model parameters
because PH data were missing for five lines, and 27 lines had available
EW-PTR model parameters because EW data were missing for three lines.

GWAS and phenotype prediction

Genome-wide efficient mixed model association (GEMMA) software was
used for GWAS (Zhou and Stephens, 2012). The phenotypes of the
maternal population in each environment were examined individually.
The environmentally dependent size and direction of the genomic effects
were also estimated. For each trait, treating the estimates of slope and
intercept as two derived features, the established mixed model GWAS
was performed to identify genomic regions where variation in both slope
and intercept was observed between different genotypes. Four methods
were used to predict the phenotype in different environments
(Figure 4A). For M1, phenotypes were predicted based on environmental
indexes in a fifth environment using models built from phenotypes in
the other four environments. The traversal was performed until
the phenotypes were predicted for all five environments. For M2,
phenotypes in each environment were predicted separately. The
genotype data for the inbred lines were randomly divided into training
and test sets (50:50), and the phenotypes in the test set were calculated
using the R package “rrBLUP” (rrBLUP method) (Endelman, 2011). The
training and test sets were swapped, and all predicted values in this
environment were calculated. For M3, the inbred lines were randomly
divided into training and test sets (50:50), the model parameters of the
inbred lines in the training set for the five environments were calculated,
the model parameters of the test set were predicted using rrBLUP, and
then the predicted parameters and environmental indexes were used to
calculate the phenotypes of the test set. The test and training set were
swapped to obtain the predicted values in all five environments. For M4,
the inbred lines were randomly and equally divided into training and test
sets. The model parameters of the inbred lines in the training set were
calculated for the four environments, the model parameters of the test
set were predicted using rrBLUP, and the predicted parameters and the
fifth environmental index were used to calculate the phenotype of
the test set in the fifth environment. The test and training sets
were swapped, and all predicted values in the fifth environment were
calculated. The traversal was performed until the phenotypes were
predicted for all five environments. For M2, M3, and M4, prediction
accuracy was assessed by calculating the correlation between observed
and predicted values in each environment, randomly dividing the
genotypes equally, and repeating this 10 times to obtain the average
Pearson’s correlation coefficient (r).

Model parameter concordance score

Following the determination of the critical windows and the construction of
the PPRE model, intercept a and slope b were derived from the FT-PTR
model and the PH-PTT model for the 207 maternal and 30 paternal lines.

Influence of phenotypic plasticity on maize hybrid performance

The parameter (a or b) for each paternal line was subtracted from the
average a or b value derived from the fitted model for the maternal popu-
lation, and the absolute value of the obtained difference was further
normalized so that all values fell between 0 and 1. The magnitude of the
difference between the biparental parameters was defined as the close-
ness. Four descriptive scatterplots were plotted for the closeness and
GCA values of the paternal lines. The correlations between the four close-
ness values and the GCA values were calculated. Two cutoff values for
closeness were defined. The first standard cutoff value was used to delin-
eate the best closeness, around 0.25 (0.2-0.3), and a closeness less than
this value was scored as +1. The second cutoff value delineated the worst
closeness, about 0.5 (0.45-0.6), and a closeness greater than this value
was scored as —1. A closeness score between the two cutoff values
was set to 0. If one of the parameters of FT and PH was missing, then
the missing score was temporarily recorded as 0. If the parameters for
both traits were missing, then the paternal line was omitted. The definition
of the standard line in these data was artificially adjusted for the best re-
sults. Correlation analysis was performed on the four concordance scores
individually or cumulatively with the GCA values of paternal lines to obtain
the type of concordance score that most significantly affected the GCA
value.
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