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To bridge the gaps between basic
research and breeding practice in
plants, machine learning (ML) holds
great promise to integrate biological
knowledge and omics data, to ulti-
mately achieve precision-designed
plant breeding.

Recent applications of ML in plant
research and breeding include data
dimensionality reduction, inference
of gene-regulation networks, gene
discovery and prioritization, plant
phenomics analysis, and genomic
prediction of plant phenotypes.
Some of the biological knowledge obtained from fundamental research will be
implemented in applied plant breeding. To bridge basic research and breeding
practice, machine learning (ML) holds great promise to translate biological
knowledge and omics data into precision-designed plant breeding. Here, we
review ML for multi-omics analysis in plants, including data dimensionality
reduction, inference of gene-regulation networks, and gene discovery and priori-
tization. These applications will facilitate understanding trait regulation mecha-
nisms and identifying target genes potentially applicable to knowledge-driven
molecular design breeding. We also highlight applications of deep learning in
plant phenomics andML in genomic selection-assisted breeding, such as various
ML algorithms that model the correlations among genotypes (genes), phenotypes
(traits), and environments, to ultimately achieve data-driven genomic design
breeding.
High-dimensional biology denotes the
integration and analysis of macroscale
to microscale biological data, elevating
the chance of identifying trait-causative
genes utilizable for knowledge-driven
molecular design breeding.

In the era of big data, ML is capable of
modeling the complex relations of geno-
typic, phenotypic, and environmental
data collected from breeding practice,
to achieve data-driven genomic design
breeding.
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Machine learning translates knowledge and data into breeding
Over recent decades, knowledge acquired from basic research in plant biology has greatly
expedited the progress of plant breeding and accelerated crop improvement, (i.e. achieving
higher yields or better stress tolerance) [1]. However, existing gaps between basic research
and breeding practice in plants still have to be overcome if we are to ultimately achieve the
goal of precision-designed plant breeding. As a subfield of artificial intelligence technology, ML
(see Glossary) holds great promise, because of its superior ability and flexibility for integrating
various forms of biological knowledge and omics data. ML may translate biological knowledge
and data into precision-designed plant breeding,mainly through twopathways (Figure 1, Key figure).
One path is to facilitate omics sciences in plant biology and expedite the discovery of agronomically
utilizable genes and mutations to achieve knowledge-driven molecular design breeding (Figure 1A).
The other path is to directly apply ML techniques in commercial breeding programs to construct a
variety of predictive models for achieving data-driven genomic design breeding (Figure 1B). These
two paths have been incorporated into and are playing essential roles in modern breeding pipelines
for which selection of the proper path depends on the number of genes or loci related to a trait.
For example, quantitative traits are determined mostly by genetic background (i.e., yield, biomass,
or environmental fitness); therefore, data-driven modeling is usually adopted to infer the correlation
between phenotypes and whole-genome markers. Polygenic traits are determined by genetic
foreground (specific genes with major effects, i.e., disease resistance); therefore functions of causal
genes have to be explicitly characterized, so that beneficial alleles can be pyramided. Whereas for
single-gene traits genome editing is the promptest way to artificially create a mutation to alter the
trait. As long as sufficient knowledge and data are accumulated in plant biology and breeding, ML
can facilitate precision-designed breeding.

Although most ML methods and tools can be used in both animals and plants [2,3], we focus
mainly on recent developments in the application of ML to plant research and breeding in this
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Glossary
Contrastive learning: a subset of
self-supervised deep learning methods
that has been successfully applied for
object recognition in the field of computer
vision.
Curse of dimensionality: means that
feature space exponentially increases
along with increased dimensionality,
which may result not only in a dramatic
increase of computational cost, but also
in problematic overfitting, since the
model may learn incorrect features from
training samples.
Deep learning (DL): constructs
large-scale, multilayer artificial neural
networks using a framework of either
supervised or unsupervised learning.
Density-based spatial clustering of
applicationswith noise (DBSCAN): a
density-based nonparametric clustering
algorithm widely used in ML, which
separates clusters of high-density points
from clusters of low-density points.
Ensemble learning: the strategy of
assembling multiple weak learners and
combining their outputs to enhance
predictability.
Genomic selection (GS): the utilization
of whole-genome genetic markers or
SNPs to predict the phenotype of an
individual from its genotype, in order to
assist selecting individuals with high
breeding values.
High-dimensional biology (HDB): the
integrative analysis of multiple types of
omics (multi-omics) data generated from
high-throughput platforms.
Linear discriminant analysis (LDA): a
supervised method; its rationale is to
make related samples as compact as
possible after projecting the data to a
low-dimensional space.
Machine learning (ML): a data-driven
paradigm in which computational
algorithms can learn from data
themselves, without either relying on
statistical assumptions or being explicitly
programmed.
Manifold learning: a class of
nonlinear DR algorithms aiming to
embed high-dimensional data into
low-dimensional space, but maximally
preserving the geometric properties of
data manifolds.
Multifactor dimensionality
reduction (MDR): a nonparametric
approach that is used to characterize
combinatory influence of multiple factors
on outcome; it is commonly used to
detect epistatic interactions among
genes in biology.
review. We first introduce the family of ML models, followed by reviewing advanced ML methods
utilized for data dimensionality reduction (DR), inference of gene-regulation networks (GRNs),
gene discovery, and prioritization. We then review applications of deep learning (DL) in plant
phenomics and ML methods employed in genomic selection (GS)-assisted breeding. We
finally discuss current challenges of ML in plant research and potential future solutions.

The family of ML algorithms
Rapid advancement of high-throughput omics technologies has seen plant biology enter the era
of high-dimensional biology (HDB) [4] (Figure 2A). However, genomic, transcriptomic, prote-
omic, metabolomic, and phenomic datasets are highly heterogeneous and complex, posing
unprecedented challenges for data integration [5]. Multi-omics data are also extremely large,
highly dimensional, and noisy, beyond the capability of conventional, model-based statistical
analysis. Therefore, analytical methodologies to cope with high-dimensional biological datasets
are eagerly anticipated. ML has been widely utilized in big data analytics in biology, due to its
superior capability of dealing with large-scale, nonstructured, and complex datasets [6]. As a
data-driven paradigm, it does not require statistical assumption and thus greatly reduces
human effort in understanding the data characteristics [7].

In general, ML algorithms, whether solving a classification or regression problem, fall into three
main classes: ‘supervised learning’, ‘unsupervised learning’, and ‘semi-supervised learning’
(Figure 2B). The most frequently used supervised learning algorithms in biology are support vector
machine (SVM), random forest (RF), artificial neural network (ANN), Bayesian approaches, and
penalized regressions such as least absolute shrinkage and selection operator, ridge regression,
and elastic net [8]. The unsupervised learning algorithms are mostly used for sample classification
and DR, such as K-means and principal component analysis (PCA), respectively [6]. Semi-
supervised learning is a hybrid of the aforementioned two classes [9]. Notably, the recently emerged
ML paradigm of DL has revolutionized the fields of computer vision, speech recognition, and natural
language processing [10]. It also has become a popular ML method for solving problems in
biology [11]. Among the DL family, convolutional neural network (CNN), recurrent neural
network (RNN), generative adversarial network (GAN), graph convolutional network (GCN),
long short-termmemory (LSTM), transfer learning, as well as contrastive learning, a recent
self-supervised learning method represented by SimCLR (a simple framework for contrastive
learning of visual representations), MoCo (momentum contrast for unsupervised visual
representation learning), and BYOL (bootstrap your own latent) [12], have been successfully
implemented in many fields of life sciences and health care [13].

ML and DL will likely play critical roles in exploiting the rapidly accumulating multi-omics data in
plant biology and ultimately applying the resulting knowledge to plant breeding. As illustrated in
Figure 2C, ML has a wide spectrum of applications in large-scale omics research, including
prediction of genetic elements such as transcription factors (TFs) and non-coding RNAs, predic-
tion of molecular structures such as alternative splicing and protein structures, and prediction of
regulatory elements such as promoters, enhancers, TF-binding sites, and epigenetically modified
regions.

Data DR
The high dimensionality of multi-omics datamay lead to the so-called ‘curse of dimensionality’,
as exemplified by the case study using multi-omics data association studies for exploiting maize
(Zea mays) germplasm (Box 1). Therefore, application of feature selection and/or DR is an essen-
tial step prior to training an MLmodel, especially when the feature set is far larger than the sample
set [14]. Whereas feature selection based on biological indicators requires expertise to remove
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Mutual information (MI): a quantity
developed in information theory, which
measures the degree of ‘mutual
dependence’ between two random
variables.
Positive-unlabeled (PU) learning: a
semi-supervised approach that uses
only positive and unlabeled samples for
prediction (e.g., first identifies a subset of
reliable negative samples from all of the
unlabeled samples and then utilizes
labeled positive and predicted negative
samples as two contrasting sets for
classifying the remaining unlabeled
samples).
Principal component analysis
(PCA):maps high-dimensional data to a
low-dimensional space through linear
projection in an unsupervised manner,
from which the maximum variance for
each projected dimension is computed.
Semi-supervised learning: first uses
labeled samples to predict a part of the
unlabeled samples and then merges the
two sets of samples to train a newmodel
to predict the remaining unlabeled
samples.
Supervised learning: an ML model is
trained using labeled samples to predict
unlabeled samples, in which labels are
also called ‘features’ or ‘predictors’ that
can be either categorical or continuous
variables.
Transfer learning: a framework for
transferring the network structure and/or
parameters of a pretrained DL model
learned from a dataset to another model
applied to a new dataset.
Unsupervised learning: algorithms
that do not require labels and instead
learn patterns directly from the data.
redundant and noisy features. ML-based approaches such as wrapper feature selection
methods (e.g., forward feature selection, backward feature selection, recursive feature elimination)
and intrinsic feature selection methods (e.g., decision trees, regularization models) do not require
domain knowledge, but may lead to the loss of important features [15]. DR relies on a spectrum
of ML algorithms and provides an alternative way for the extraction of features. Two of the most
widely used linear DR algorithms are PCA [16] and linear discriminant analysis (LDA) [17]. In
biology, while PCA is widely applied for extracting and visualizing sample relatedness based on
population genotype data and omics data, LDA is commonly used in feature extraction and
classification tasks. For instance, LDA has been used to classify wheat varieties exhibiting different
efficiency of nutrient uptake by extracting features from the images of wheat root systems [18].

Certain algorithms are designed for learning the nonlinear geometry of high-dimensional data,
and multifactor dimensionality reduction (MDR) is among the most highly used in biology
[19]. In barley, it was adopted for inferring epistatic interactions between multiple quantitative
trait loci (QTLs) and computing the joint effects of multiple SNPs associated with a trait by
converting multiple attributes into one [20]. Non-negative matrix factorization (NMF) is another
nonlinear method that can factorize a non-negative matrix A(m × n) into a feature matrix W(m × k)

and a coefficient matrix H(n × k), in which k is the low rank approximation of A [k ≤ min (m, n)]
[21]. The main objective of NMF is to reduce data dimensionality by reducing large numbers of
features. It has been applied to classification of expression data in arabidopsis (Arabidopsis
thaliana) and maize, with thousands of genes clustered into small sets of ‘metagenes’ exhibiting
similar expression patterns in samples [22,23]. As previously mentioned, single-cell RNA se-
quencing (scRNA-seq) data exhibits extremely high dimensionality and nonlinear characteristics.
Multiple manifold learning techniques have been introduced for applying DR to scRNA-seq
data, including t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approxi-
mation and projection (UMAP), and potential of heat-diffusion for affinity-based transition embed-
ding (PHATE) [24]. These methods are effective for capturing nonlinear relationships of different
populations of cell types embedded in tens of thousands of transcriptomes at a single-cell level
by visualizing the structure in 2D or 3D space [25].

In plant germplasm research, these DR algorithms are also widely used for inferring and visualiz-
ing the genetic structure of a population based on genotypic data, an essential step prior to the
application of genome-wide association studies (GWAS) and GS [26,27]. In the recently released
software package MODAS (multi-omics data association analysis), Liu et al. developed a novel
method for applying DR to genotypic data to accelerate association analysis [28]. MODAS first
applies a nonlinear clustering algorithm called DBSCAN (density-based spatial clustering
of applications with noise) to identify haplotype blocks and then employs PCA to generate a
pseudo-genotype index file. The index represents a highly simplified atlas of genomic variations,
which may be used for population structure analysis or association analysis with ultrahigh
computing efficiency.

Inference of GRNs
The major objective of multi-omics analysis is to reconstruct GRNs, and ChIP-seq experiments
are the most straightforward approach for profiling the binding sites of TFs and target genes.
Compared with humans and model animals, ChIP-seq data is very scarce in plants, with only a
limited number of TFs having been characterized in model plants such as arabidopsis, rice, and
maize [29]. Thus, inference of GRNs in plants mostly relies on expression data, from which a
potential regulatory relationship between two genes is inferred using correlation-based methods
and mutual information (MI) algorithm [30]. Pearson’s correlation coefficient and Spearman’s
rank correlation coefficient were among the earliest methods used in gene coexpression analysis
Trends in Plant Science, February 2023, Vol. 28, No. 2 201
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[31]. The algorithms CLR (context likelihood of relatedness), ARACNE (algorithm for the recon-
struction of accurate cellular networks), and TGMI (triple-gene mutual interaction) all utilize MI
as a measurement to represent the potential of a regulatory relationship between two genes
based on gene coexpression patterns [32–34]. However, both correlation- and MI-based
methods fail to distinguish regulatory direction and are unable to consider temporal delay
between expression of genes [35]. Probabilistic graphical models (PGM) solves this problem by
incorporating prior probability distribution of temporal, spatial, or environmental information, as
used by the tool GENIST [30]. GENIST utilizes dynamic Bayesian networks to infer GRN by com-
bining spatial with temporal expression data in arabidopsis root stem cells [36]. Another example
is JRmGRN, based on a Gaussian graphical model, which is capable of jointly reconstructing
multiple GRNs to identify common hubs or condition-specific genes using arabidopsis data
collected from different tissues or under different light conditions [37]. However, one main limitation
of PGM-based methods is that they require expression data at high spatiotemporal resolution to
ensure the accuracy of inferred GRNs.

ML-based approaches to GRN inference have emerged recently and gained widespread
attention due to their flexibility and superior performance [38]. GENIE3 is the most popular
method used in plants and mainly utilizes tree-based models, such as RF and extreme ran-
domized tree, to infer GRNs from expression data [39]. In maize, GENIE3 was used to generate
45 maize GRNs by integrating publicly available expression datasets, from which distinct asso-
ciation patterns of TFs and target genes in different populations were revealed [40]. In wheat,
GENIE3 was used to infer a GRN-regulating senescence and identify key regulators that
were functionally validated for the first time in a polyploid species [41]. BTNET is another
tree-based tool, employing adaptive boosting and gradient boosting algorithms, with a focus
on inferring GRNs from time-series expression data [42]. In addition to these decision-tree-
based methods, Beacon utilizes an SVM algorithm for context-specific inference of GRNs at
specific stages during the seed development of arabidopsis [43]. As scRNA-seq has become
a popular technique in omics studies, there is a need for tools capable of inferring cell-specific
GRNs. GRNBoost2 is one of these, developed on the framework of GENIE3 with stochastic
gradient boosting machine (GBM) algorithms [44]. To improve performance when working
with the high dimensionality of gene expression data at a single-cell scale, an analytical pipeline
of SCENIC was developed by integrating multiple tools, including GRNBoost2, cisTarget,
AUCell, and nonlinear projection methods, to visualize cell populations [45]. A benchmark
test of SCENIC showed that the pipeline can analyze a dataset comprising 10 000 genes
and 50 000 cells within 2 h.

Strictly speaking, GRNs inferred from gene expression data may not be regarded as bona fide
regulatory relationships of genes. However, with the availability of multi-omics data, multiple
layers of genetic information may be integrated to improve the power of GRN inference [46].
One example is iDREM (interactive dynamic regulatory events miner), designed to integrate static
and time-series multi-omics data based on a hiddenMarkov model [47]. iDREM has been used in
plants to reconstruct temporal GRNs and identify key regulators involved in the responses to
biotic and abiotic stress using transcriptomic, proteomic, and epigenomic data [48]. Similarly,
RTP-STAR (regression tree pipeline for spatial, temporal, and replicate data), developed on
the framework of GENIE3, was used to integrate transcriptomic, proteomic, and phosphor-
proteomic data in arabidopsis to infer GRNs in response to jasmonic acid [49]. Recently, an
improved version of RTP-STAR was released, named SC-ION (spatiotemporal clustering and
inference of omics networks), which has been successfully applied in arabidopsis to infer
TF-centered, brassinosteroid-responsive networks by separately constructing abundance and
phosphosite GRNs from multi-omics data [50]. Multi-omics data at a single-cell scale has also
202 Trends in Plant Science, February 2023, Vol. 28, No. 2
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Key figure

Translation of biological data and knowledge into precision-designed breeding in plants
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Figure 1. (A) Understanding gene functions and regulatory mechanisms from basic research in plant biology. A biological knowledgebase will facilitate knowledge-driven
molecular design breeding through multiple technologies. An example of trait improvement in a maize cultivar through marker-assisted selection, polygenic pyramiding of
favorable alleles, and genome editing is shown. (B) Genotypic, phenotypic, and environmental data accumulated from commercial breeding programs will facilitate data-
driven genomic design breeding by constructing a variety of decision-making models. An example of utilizing a genomic selection (GS) model to predict phenotypes from
genotypes is shown. Abbreviations: G × E, genotype by environment; G2P, genotype-to-phenotype.
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Figure 2. Applications of machine learning (ML) in plant biology. (A) Types of biological data produced from microscale to macroscale measurements.
(B) Supervised and unsupervised ML methods applied in biology. The four boxes represent the applications of LightGBM to gene prioritization through feature
importance analysis, the graph convolutional network (GCN) model to integration of multi-omics data, OPTICS algorithms to classification of maize lines using
genotypes, and t-SNE to visualizing the structure of a maize population. (C) Examples of biological applications of ML. Abbreviations: ANN, artificial neural network;
CART, classification and regression tree; CL, contrastive learning; CNN, convolutional neural network; DBSCAN, density-based spatial clustering of applications with
noise; eGWAS, expression GWAS; FIR, far infrared; GAN, generative adversarial networks; GCN, graph convolutional network; GDD, growing degree days; GWAS,
genome-wide association study; HC, hierarchical clustering; HIS, hyperspectral imaging; KNN, K-nearest neighbors algorithm; LiDAR, light detection and ranging light;
GBM, light gradient boosting machine; LR, logistics regression; LSTM, long short-term memory; MDR, multifactor dimensionality reduction; mGWAS, metabolome
GWAS; MLP, multilayer perceptron; MSI, multispectral imaging; MWAS, metabolome-wide association study; NMR, nuclear magnetic resonance; OPTICS, ordering
points to identify cluster structure; PCA, principal component analysis; PHATE, potential of heat-diffusion for affinity-based trajectory embedding; PTR, photothermal
ratio; PTT, photothermal time; QTLs, quantitative trait loci; RBMs, restricted Boltzmann machines; RF, random forest; RGB, red-green-blue channel camera; RNN,
recurrent neural network; scRNA-seq, single-cell RNA sequencing; SOM, self-organizing map; SVM, support vector machine; t-SNE, t-distributed stochastic neighbor
embedding; TWAS, transcriptome-wide association study; UMAP, uniform manifold approximation and projection; UML, unsupervised machine learning; XGBoost,
extreme gradient boosting machine.
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become available recently. For instance, an analytical framework for inferring cell type-specific
GRNs by integrating scRNA-seq and single-cell assay for transposase-accessible chromatin
using sequencing (scATAC-seq) data from arabidopsis root cells has been proposed [51].

Gene discovery and prioritization
Omics analysis is often used to identify trait-related genes and causal variants, with the ultimate
goal of applying marker-assisted selection and/or genome editing to improve plant traits. After
reconstruction of a GRN containing a set of genes in a specific pathway of interest, the next
task is to shorten the candidate list using a prioritization algorithm to assist selection of the
most promising genes for functional validation. The R package mlDNA (ML-based differential
204 Trends in Plant Science, February 2023, Vol. 28, No. 2
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Box 1. A case study of applying DR in MODAS

Multi-omics analysis of a reference panel of germplasm can greatly enhance the mapping resolution of causative genes. However, multi-omics datasets are highly
dimensional. Whole-genome resequencing of a panel containing hundreds of samples may generate tens of millions of SNPs. One single transcriptome contains tens
of thousands of genes’ expression per sample. If generated at single-cell scale, the sample count shall bemultiplied by thousands of cell counts. If multiple conditions are
included, data dimensionality will further exponentially expand. Thus, the ‘curse of dimensionality’ is inevitable. To solve this issue, the tool MODAS (multi-omics data
association studies) utilizes multiple unsupervised learning techniques to accelerate population-scale multi-omics analysis (Figure I).

Step 1. DR on genotypic data: using a maize population as an example, MODAS first uses the Jaccard index to compute genotypic similarity of any pair of SNPs,
followed by DBSCAN to cluster SNPs with high similarity on genotypes as a genomic block. PCA is then applied on each block of clustered SNPs and a pseudo-
genotype index file is generated. The file contains ~60 000 genomic blocks as a highly simplified variation atlas to represent the genotypes of the original 2 million SNPs
in maize.

Step 2. DR on omics data: taking metabolomic data as an example, about 30 000 compounds are profiled in one set of metabolome. However, a substantial proportion
of the data is redundancy and noise, which must be removed before conducting association analysis. MODAS first uses mutual information to cluster redundant
compounds exhibiting similar pattern across the samples and then performs DR within each cluster using the NMF algorithm. NMF maps the matrix of compounds ×
samples into one dimension of ‘meta-compound’ and one dimension of ‘meta-sample’. The weights of meta-compound for the samples can classify the 300 maize
samples into two groups in accordance with the two major haplotypes (H1 and H2) of the genomic block 30519.

Step 3. Association analysis: the weights of meta-compounds can be then regarded as phenotypic traits to performGWAS either using the genotypes of 2 million SNPs
or the pseudo-genotypes of 60 000 blocks. Both ways can map the same QTL and identify the peak SNP Chr3_182858806. Compared with GWAS between the 194
compounds and 2 million SNPs, association analysis between meta-compounds and pseudo-genotypes can reduce 45.6 h to only 0.63 min and the same result is
produced. This strategy is applicable to any type of omics data for gene mining at the population-scale.
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Figure I. Multi-omics data association studies. Abbreviations: GWAS, genome-wide association study; NMF, non-negative matrix factorization; PCA, principal
component analysis.
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network analysis) is a tool utilizing the RF algorithm to prioritize stress-responsive genes in
arabidopsis and two candidate genes were successfully validated to function in the salt stress
response [52]. Another novel strategy is to combine multiple GRN algorithms to prioritize genes,
which was used to identify and validate the key drought-related TF OsbHLH148 in rice [53].

Compared with GRN-based gene discovery, identifying trait-related genes and natural variants
with potential for use in molecular breeding is more straightforward using GWAS. However, a
QTL identified by GWASmay include dozens to hundreds of genes as a result of linkage disequi-
librium, and selection of candidate genes for further validation still requires human judgement
based on prior knowledge. To copewith this issue, multiple MLmethods have been implemented
Trends in Plant Science, February 2023, Vol. 28, No. 2 205
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to prioritize candidate genes and infer causal mutations within a QTL summarized from GWAS
results, including penalized regression, Bayesian approaches, GBMs, and DL [54]. The key
rationale of ML-based gene prioritization is compilation of a set of features obtained from genes
with known function and their causal variants affecting phenotypes [55]. QTG-Finder is a tool
specifically designed for plants, performing gene prioritization in post-GWAS analysis using an
array of ML models [56]. The feature set of QTG-finder includes 28 features summarized from
published genomic data in the model plant arabidopsis, such as DNA polymorphisms, functional
annotations, cofunction networks, and evolutionary conservation. QTG-Finder2 is an upgraded
version that integrates orthologous information among arabidopsis, rice, Sorghum, and Setaria
into the feature set [57]. By this means, QTG-Finder2 is able to prioritize genes discovered by
GWAS analysis in a non-model species where few causal genes are known. However, the
major obstacle for performing ML-based gene discovery and prioritization in plants is a lack of
prior knowledge, with a very limited number of genes having been functionally characterized in
plants besides arabidopsis. Here, semi-supervised learning strategies relying on only a small
number of labeled samples offer a possible solution. Positive-unlabeled (PU) learning is
suitable for situations where unlabeled samples represent the majority, and PU learning has
been successfully applied to causative gene prioritization [58].

Deep learning in plant phenomics
Employment of multiple types of computer vision equipment for high-throughput phenotyping
(HTP) over recent decades has fostered rapid advances in plant phenomics [59]. DL is particularly
suitable for large volumes of complex, unstructured imaging data because of its superior ability to
perform feature extraction and model training simultaneously [60]. Applications of supervised DL
algorithms, including CNN, RNN, and LSTM, to plant phenomics and precision agriculture has
been well reviewed [59,60]. Here, we focus on the greatest obstacle to the development of
plant phenomics. To ensure the precision and robustness of DL prediction, a sufficient number
of accurately labeled samples for model training is essential. However, sample labeling is a labo-
rious and tedious process, especially when conducted in the open field, and it is impractical in
most cases for a single team to collect a sufficient number of labeled samples [8]. Of the multiple
strategies proposed for solving this issue, the most promising is application of self-supervised DL
algorithms, a specific class of unsupervised learning, to HTP data without absolute reliance on
labeled samples. GAN utilizes either self-supervised or semi-supervised strategies to generate
synthetic training data programmatically through DL models [61]. For example, DCGAN (deep
convolutional GAN) was used to produce field level maize tassel synthetic images [62], StyleGAN
was applied to create images for plant disease detection [63], and semi-supervised GAN was
adopted to generate training samples of plant seedlings [64]. Application of GAN to segmentation
of different portions of plant organs and recognition of plant diseases indicates that this strategy
can significantly enhance model predictability and reduce the workload of sample labeling [65].
Because the labels of synthetic training samples are predicted by the algorithm, there is inevitably
some risk of overfitting arising from incorrect prediction. To solve this problem, the label smooth-
ing regularization (LSR) algorithm has been adopted to generalize a predictive model by replacing
one-hot encoded labels with smoothed labels [66].

However, not all tasks in plant phenomics can be solved by unsupervised or semi-supervised
learning and the complicated nature of plant phenomics requires these strategies to be validated
using actual HTP data. An alternative strategy is to establish a joint-research community for plant
phenomics where members share their labeled HTP data for public use in model training [67].
A third strategy is to adopt transfer learning [60], which has been successfully applied in
plant organ segmentation and disease identification [68,69]. Multiple pretrained DL model
architectures have been applied to plant phenomics using transfer learning, such as VGG-16,
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ResNet-50, DenseNet, GoogLeNet, and YOLOv3 [60]. Transfer learning can accelerate the
training of a new model with the assistance of a pretrained model and may also benefit from
large out-of-domain information [70]. However, it alsomust be noted that the two datasets should
share high commonality to avoid overfitting.

Genomic prediction of phenotypes
Themost straightforward way of achieving genomics-assisted plant breeding is to predict pheno-
types through genotypes and/or omics features, known as GS or genotype-to-phenotype (G2P)
prediction [71]. This is especially suitable for polygenic traits for which it is difficult to design
molecular markers showing major effects or for stress-related traits associated with high pheno-
typing costs to achieve stress-induction conditions [72]. GS-assisted breeding has been widely
employed in major crops, such as for prediction of yield heterosis in maize and rice, nutritional
quality of soybean, and drought tolerance in wheat [73–75]. Most GS methods are based on
best linear unbiased prediction (BLUP) or Bayesian models. However, these statistical methods
are not capable of modeling the nonlinear effects and epistatic interactions of polygenic traits,
especially for crops such as hybrid maize that exhibit strong effects of heterosis in the F1
generation [76]. Multiple nonlinear ML approaches, such as RF, SVM, and ANN, for improving
prediction accuracy and computing efficiency have been tested [77]. However, these classic
ML methods do not produce significant improvement compared with BLUP or Bayesian models,
especially when the number of training samples is far fewer than the number of samples to be pre-
dicted [71]. As a result, DL paradigms were introduced to the field of GS. The software DeepGS
uses CNN to predict eight agronomic traits in wheat with a predictive accuracy surpassing those
of ANN and ridge-regression BLUP (rrBLUP) [78]. CNN and Bayesian models were compared for
five agronomic traits in strawberry and blueberry, which are hybrid plant species [79]. The CNN
model outperformed the Bayesian model, presumably because the former is more sensitive in
detecting epistatic effects in a hybrid genome. Although the CNN model exhibits outstanding
performance in the research field, it is seldom used in practical breeding for three main reasons:
first, the procedure for constructing and tuning a CNN model is very complicated and time
consuming; second, a CNN model requires a large number of training samples to ensure model
accuracy and robustness; third, actual scenarios in the seed industry are far more complicated
than those in the research setting due to the genetic complexity of breeding populations. A recent
study systematically evaluated 12 statistics- and ML-based algorithms for predicting 18 traits in
six plant species [80]. No single method performed best across all species and traits and model
tuning for automated optimization of hyper-parameters using grid search was the key to achieving
the best performance for all ML methods. However, it significantly increased consumption of
computing resources, with limited improvement of prediction accuracy.

Precision prediction is not the only goal of GS-assisted plant breeding pursued in industrial practice
owing to the complicated nature of breeding programs and the complex composition of genetic
materials. Instead, robustness, extendibility, and efficiency of a GS model, and the ability to predict
a large set of unlabeled samples using a much smaller set of training samples, are the most
important factors to consider [81]. To meet these demands, a one-stop toolbox called CropGBM
(genomic breeding machine for crops) based on the LightGBM (light gradient boosting machine)
algorithmwas recently developed [82]. LightGBM is amember of the tree-based ensemble learning
paradigm [83]. In addition to ultrafast efficiency in coping with large sample sets, LightGBM
outperforms other MLmethods and rrBLUP in terms of model precision and robustness, especially
in situations with a small training population versus a large candidate population [82].

G2P prediction in plants also has to consider environmental influence, which may be modeled by
genotype by environment (G × E) interaction. Using statistical methods like genomic BLUP or
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Outstanding questions
The ‘big-p, small-n (p >> n)’ issue, in
which p stands for predictors or fea-
tures and n stands for samples, is a
common challenge for all the ML
methods when coping with high-
dimensional omics data. What kind of
automated feature extraction methods
can solve this problem?

Most ML studies in plants possess
‘self-validation’ status, meaning that
model predictability is tested only
using a cross-validation scheme rather
than by applying the trained model to
an external dataset for validation.
How can the effectiveness of ML pre-
diction be objectively validated?

Scarcity of labeled training samples is a
major obstacle limiting the application
of ML in plants. Will unsupervised or
self-supervised ML models like con-
trastive learning, transfer learning,
and/or generative adversarial networks
offer a solution to this issue?

Current statistical or ML methods only
infer ‘association’ between gene and
trait, rather than ‘causation’. Will ML
be able to infer the ‘causal relation-
ships’ between mutations, genes, bio-
molecules, and traits, increasing the
efficiency and accuracy of assisting
biologists in formulating testable
hypotheses to validate?

Large-scale omics datasets have been
generated only for a very limited num-
ber of model plants for ML analysis. Is
it possible to transfer biological knowl-
edge obtained from model plants to
non-model species by considering
evolutionary conservation of gene se-
quences, functions, and pathways?
This idea has recently been imple-
mented by a so-called ‘evolutionarily
informed machine learning’ framework
to predict traits in maize using the data
and knowledge from arabidopsis to
train a XGBoost model.
rrBLUP, G × E effect can be directly modeled by adding environmental factors as covariates in
addition to genotypes [84]. By contrast, ML is more flexible in terms of integrating various types
of features. Westhues et al. utilized gradient boosting (GB) frameworks, namely XGBoost
and LightGBM, to integrate genotypes and environmental factors, including weather, location
(longitude and latitude), and year, for predicting grain yield and plant height of maize. Compared
with results from a linear random effect model considering the same environmental factors, the
GB methods produced equivalent precision with significantly enhanced computing efficiency
[85]. Another strategy to further improve predictability is to predict phenotypes by integration of
genotypes and omics features from transcriptomic, metabolomic, and proteomic data [86]. The
feasibility of this approach was validated by improved predictability of yield-related traits in hybrid
rice [87]. However, caution is required in multiple aspects to prevent overfitting. First, DR must be
applied to omics data prior to model training. Second, spatial-temporal features of the omics data
must be consistent with the target traits, as tissue-specificity of gene expression will seriously
affect predictability. Third, feature selection is required to select genes showing tissue-specific
patterns, as expression of housekeeping genes may also introduce bias. It is worth noting that
DL is perhaps a suitable solution for integrating genotypes, environmental factors, and omics
data for genomic prediction of phenotypes, as these different types of features may be designed
as different layers of a neural network to achieve better predictability [88].

Concluding remarks and future perspectives
Application of biotechnology and information technology will accelerate plant breeding. With the
rapid advancement of various high-throughput omics technologies, plant research has entered
the era of HDB. As a multidisciplinary field, HDB integrates and analyzes macroscale to micro-
scale biological data to identify genes and regulatory networks associated with phenotypic traits.
ML is the best current solution to interpret HDB data and obtain biological knowledge, given its
superior capability for big data analytics. However, challenges in the field of ML analytics in
both basic research and plant breeding still exist, with some of them common to both animals
and plants and some specific to plants (see Outstanding questions). At last, it is foreseeable
that plant breeding may finally enter the generation of the ‘5Gs (genome, germplasm, gene, ge-
nomic breeding, and gene editing)’ [89]. To bridge basic sciences and applied breeding in plants,
ML holds great promise to translate biological knowledge and omics data into precision-
designed plant breeding, through knowledge-driven molecular design breeding and data-
driven genomic design breeding, respectively.

A shift of breeding paradigm toward a data-driven perspective has occurred in the seed industry
[90], attributed to integrated applications of doubled haploid (DH) technology, big data analytics,
high-throughput genotyping, and phenotyping platforms. Taking maize as an example, a breeding
enterprise commonly produces tens to hundreds of thousands of DH lines per year. Screening of
this amount of DH lines cannot be done by phenotypes but instead has to rely on genotypes.
Genotyping by targeted sequencing is a cost-effective technique that drastically reduces the
cost by multiplexing thousands of DNA samples in one sequencing library [91]. Nevertheless, the
new bottleneck has become the high cost and low efficiency for tissue collection, sample prepara-
tion, and DNA extraction, if all of these steps are done manually. In the near future, industrial-scale
workflow utilizing automated liquid-handling robots are urgently required to be integrated into a
modern breeding pipeline.
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